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Abstract

In this paper a new nonparametric estimate of conditional quantiles is proposed, that

avoids the problem of crossing quantile curves [calculated for various p ∈ (0, 1)]. The method

uses an initial estimate of the conditional distribution function in a first step and solves the

problem of inversion and monotonization with respect to p ∈ (0, 1) simultaneously. It is

demonstrated that the new estimates are asymptotically normal distributed and asymptot-

ically first order equivalent to quantile estimates obtained by local constant or local linear

smoothing of the conditional distribution function. The performance of the new procedure is

illustrated by means of a simulation study and some comparisons with the currently available

procedures which are similar in spirit with the proposed method are presented.

Keyword and Phrases: Quantile estimation, conditional distribution, local linear estimate, Nadaraya

Watson estimate, crossing quantile curves

1 Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as a supplement to least squares

methods focussing on the estimation of the conditional mean function. The very general technique

of estimating families of conditional quantile curves yields to a great extension of parametric and
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nonparametric regression methods. Often the graphs of several conditional quantiles are used

to represent the basic features of the entire conditional distribution of the response Y given

the explanatory variable X. Applications of quantile regression include such important areas as

medicine, economics and environment modeling. For more details we refer the interested reader

to Yu, Lu and Stauder (2003) and the recent monograph of Koenker (2005).

In this article we consider the problem of nonparametric estimation of conditional quantile func-

tions. Since the seminal work of Koenker and Bassett (1978), who considered parametric quantile

estimates, several authors have proposed nonparametric methods in this context [see Chaudhuri

(1991), Koenker, Portney and Ng (1992, 1994), Yu and Jones (1997, 1998) among many others].

One very popular approach is to combine the concept of local constant or local linear estima-

tion with the idea of using a “check function” for the calculation of quantiles. More precisely, if

{Xi, Yi}n
i=1 denotes a bivariate sample, the local constant (or Nadaraya-Watson) estimate of the

pth conditional quantile of the conditional distribution F (y|x) is defined as

q̄p(x) = argmina

n∑
i=1

ρp(Yi − a)K
(x−Xi

h

)
,(1.1)

while the local linear estimate q̂p(x) is obtained as q̂p(x) = â, where (â, b̂) minimizes the function

n∑
i=1

ρp(Yi − a− b(Xi − x))K
(x−Xi

h

)
,(1.2)

[see for example Yu and Jones (1998) or Koenker (2005), Chap. 7]. In (1.1) and (1.2)

ρp(z) = pzI[0,∞)(z)− (1− p)zI(−∞,0)(z)

denotes the check function, K is a kernel function and h a bandwidth converging to 0 with

increasing sample size. As an alternative several authors propose to estimate the conditional

distribution function nonparametrically

F̂ (y|x) =
n∑

i=1

wi(x)I{Yi ≤ y} ,(1.3)

where wi(x) denotes a weight function depending on x and the predictors {Xi}n
i=1, and the estimate

of the quantile is obtained solving the equation p = F̂ (y|x). Note that the solution of this equation

is not necessarily unique [see Yu and Jones (1998)]. Typical choices for the weights include the

Nadaraya Watson or local linear weights [see also Hall, Wolff and Yao (1999), who proposed

adjusted Nadaraya Watson weights].
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It was pointed out by several authors [see e.g. He (1997), Yu, Lu and Stauder (2003) or Koenker

(2005), Chap. 7] that the estimates based on the concepts (1.1) - (1.3) have an important draw-

back in practical applications. For example local polynomial techniques - although very attractive

from the viewpoint of mathematical efficiency - do not yield to estimates respecting the logical

monotonicity requirements with respect to the probability p. As a consequence different quantile

curves based on such estimators may cross, which is an undesirable feature in applications. He

(1997) proposed a restricted version of regression quantiles in order to avoid the embarassing phe-

nomenon of quantile crossing, while Yu and Jones (1998) suggested a double kernel smoothing

method and in a second step a minor modification of this estimate, such that the corresponding

quantile curves are monotone as a function of the probability p. Hall et al. (1999) proposed an

adjusted Nadaraya-Watson estimate, which modifies the weights of the Nadaraya-Watson estimate

such that the resulting estimate of the conditional distribution function is monotone and asymp-

totically equivalent to the local linear method. The properties of positivity and monotonicity of

this method are advantageous to obtain estimates of the conditional quantile from the conditional

distribution estimate. However, it seems to be difficult to apply this methodology to local polyno-

mial estimates of higher order. Note that this is straightforward for the methods (1.1) and (1.2)

based on the check function but at the cost of obtaining crossing quantile curve estimates, see

Koenker (2005), Chap. 7. Recently Takeuchi, Le, Sears and Smola (2006) proposed to minimize

the empirical risk plus a regularizer in order to obtain a nonparametric estimate of the quantile

function. As pointed out in this reference the method can be modified to avoid quantile crossing

yielding to a quadratic optimization procedure. However, this modification destroys some nice

properties of the unconstrained quantile estimate [see the discussion on page 1240 in Takeuchi et.

al. (2006)].

It is the purpose of the present paper to propose an alternative and very simple nonparametric non-

crossing estimate of quantile curves. The method is based on an initial nonparametric estimate

of the conditional distribution function of the form (1.3) and solves the problem of determining

the solution q̄p(x) of the equation p = F̂ (y|x) and monotonizing the function p → q̄p(x) with

respect to the probability p simultaneously. The concept is applicable to any estimate of the

conditional distribution function and based on the idea of non-decreasing rearrangements [see

Benett and Sharpely (1988)], which was recently used by Dette, Neumeyer and Pilz (2006) in

the context of estimating a monotone regression. The basic arguments of this technique are

carefully described in Section 2. While the general methodology is applicable to any estimate

of the conditional distribution function, we concentrate in Section 3 on the case of independent
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identically distributed observations {(Xi, Yi)| i = 1, . . . , n} and on the local constant and local

linear estimate of the conditional distribution function [see Fan, Yao and Tong (1996)] for the sake

of definiteness. It is demonstrated that the proposed estimates of the conditional quantile curves

are asymptotically normal distributed and first order asymptotically equivalent to the estimates

proposed by Yu and Jones (1998) and by Hall et al. (1999). We also briefly discuss several

extension of the methodology to high dimensional predictors, dependent data and alternative

preliminary estimates. In Section 4 some simulation results are presented and the procedure is

illustrated by means of a data example. We also compare the new procedure with the methods

of Yu and Jones (1998) and Hall et al. (1999), which are most similar in spirit to the estimate

proposed in this paper. Finally, all technical proofs are deferred to an Appendix.

2 Non-crossing nonparametric estimates of quantile curves

Let {Xi, Yi}n
i=1 denote a bivariate sample of observations with joint density f(X,Y ). For the sake

of simplicity we assume that the explanatory variables are real valued, but the extension to d-

dimensional (d > 1) covariates will be straightforward [see Remark 3.4 below]. Throughout this

paper

fX(u) =

∫
f(X,Y )(u, v)dv

denotes the (marginal) density of the random variables Xi and

Fx(y) = F (y|x) = P (Yi ≤ y|Xi = x) =
h(x, y)

fX(x)
(2.1)

is the conditional distribution of Yi given Xi = x,. Let G : R→ [0, 1] denote a strictly increasing

(fixed and known) distribution function. Then the basic idea of our approach can be easily

explained as follows: for a distribution function F : R→ R and p ∈ F (R) we consider the integral

H−1(p) :=

∫

R
I{F (y) ≤ p}dG(y) =

∫ 1

0

I{F (G−1(v)) ≤ p}dv.(2.2)

The function G is introduced here in order to guarantee the existence of the integral if the support

of the distribution function is unbounded and its choice will be discussed below. Note that the

function p → H−1(p) is obviously always nondecreasing and that for a strictly increasing function

F it follows that H−1(p) = G ◦ F−1(p). Consequently, we obtain in this case

G−1 ◦H−1(p) = F−1(p).(2.3)
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The function H−1 is not smooth, but smoothing can easily be accomplished using

H−1
hd

(p) =
1

hd

∫ p

−∞

∫ 1

0

Kd

(F (G−1(v))− u

hd

)
dvdu −→

hd→0
H−1(p),(2.4)

where Kd is a symmetric density (with properties specified below) and hd denotes a bandwidth

converging to 0 (throughout this paper we assume the existence of the corresponding integrals

without further mentioning of this fact). Note that the function H−1
hd

is always increasing because

(H−1
hd

)′(p) ≥ 0 ∀ p ∈ F (R) and that G−1 ◦ H−1
hd

is an increasing approximation of F−1 (provided

that this function is invertible).

The construction of an estimate of conditional regression quantiles is now straightforward. For

computational reasons the integration with respect to the variable dv in (2.4) is substituted by

a summation and the function F is replaced by an appropriate estimate of the conditional dis-

tribution, say F̂x, which will be specified below. Under some assumptions of regularity for this

estimate the statistic

Ĥ−1
x (p) =

1

Nhd

N∑
i=1

∫ p

−∞
Kd

(
F̂x(G

−1(i/N))− u

hd

)
du(2.5)

is a consistent estimate of the quantity G(F−1
x (p)). This yields

F̂−1
x,G(p) = (G−1 ◦ Ĥ−1

x )(p)(2.6)

as estimate of the conditional quantile F−1
x (p), which is (by the reasoning of the previous para-

graph) isotone with respect to p.

Remark 2.1. Note that the estimate (2.6) depends on the given distribution function G. How-

ever, for the estimate (1.3) with Nadaraya-Watson or local linear weights it will be demonstrated

in the following section that in the case hd = o(hr) this dependence is not visible in the first order

asymptotics. Similar observations can also be made for other estimates of the conditional distri-

bution function as local polynomials or smoothing spline methods [see Masry and Fan (1997), Gu

(1997)]. Note also that it is reasonable to choose the function G in dependence on the explanatory

variable x. Some recommendations regarding the choice of G will be given in Section 4 and it will

be demonstrated by means of a simulation study that even for finite sample sizes the effect of the

function G on the statistical properties of the resulting estimate F̂x,G is nearly nonvisible.

Remark 2.2. Note that definition (2.6) does not require a local linear or Nadraya Watson type

estimate of the conditional distribution function. In fact the procedure can be used to obtain
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non-crossing quantile curves from any estimate of the conditional distribution function. However,

the theoretical (asymptotic) properties of the estimate obviously depend on the initial estimate

of F (y|x). In the following section we derive such properties for the estimate (1.3) with Nadaraya

Watson and local linear weights and indicate the corresponding results if alternative estimates are

used for the conditional distribution function.

3 Asymptotic results

For the sake of definiteness we consider a sample of independent identically distributed obser-

vations (X1, Y1), (X2, Y2), . . ., but the results can easily be extended to sequences of dependent

random variables [see Remark 3.4 below] As an estimate of the conditional distribution func-

tion we use the statistic F̂x(y) = F̂ (y|x) defined in (1.3), where the weights wi(x) are either the

Nadaraya Watson

wi(x) =
Kr

(
Xi−x

hr

)

∑n
j=1 Kr

(
Xi−x

hr

) , i = 1, . . . , n,(3.1)

or local linear weights

wi(x) =
Kr

(
Xi−x

hr

)
(Sn,2 − (x−Xi)Sn,1)

Sn,2Sn,0 − S2
n,1

, i = 1, . . . , n,(3.2)

with

Sn,` =
n∑

j=1

K
(x−Xi

hr

)
(x−Xj)

` ` = 0, 1, 2(3.3)

[see Fan and Gijbels (1996)]. In (3.1) and (3.2) the quantity Kr denotes a symmetric, continuous

kernel with compact support, say [−1, 1], and hr refers to the corresponding bandwidth converging

to 0 with increasing sample size. The kernel Kd in the statistic is assumed to be twice continuously

differentiable, symmetric, positive with compact support [−1, 1], while the corresponding band-

width hd converges to 0 with increasing sample size. Furthermore, we assume for the bandwidths

hd and hr

nh5
r = c + o(1); hd = o(hr);

h4
r

h3
d

= o(1)(3.4)

for some positive constant c, and that the sample size satisfies n = O(N). Our main results specify

the asymptotic distribution of the corresponding quantile estimate obtained from (2.6) with (1.3)
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as initial estimate. The proof is deferred to the Appendix. Throughout this paper ∂k
1s and ∂k

2s

denotes the kth partial derivative of the function s(x, y) or s(y|x) with respect to the coordinate

x and y, respecitvely, and for a kernel K we define µ2(K) = 1
2

∫ 1

−1
t2K(t)dt.

Theorem 3.1. Assume that the functions f(X,Y ), Fx, G are twice continuously differentiable, that

the function

h(x, y) =

∫ y

−∞
f(X,Y )(x, v)dv(3.5)

is twice differentiable with respect to the first coordinate such that for any x the function ∂2
1h(x, y)

is Lipschitz continuous with respect to y and satisfies

sup
z∈Uε(x),t∈IR

|∂2
1h(z, t)| < ∞(3.6)

in some neighbourhood Uε(x) of x. Suppose further that
∫
|f ′′X(u)|du < ∞

∫ ∫
|∂1f(X,Y )(u, v)|dudv < ∞(3.7)

and let p ∈ (0, 1) such that F ′
x(F

−1
x (p)) > 0, G′(F−1

x (p)) > 0 .

(a) If the weights in (1.3) are given by the Nadaraya Watson weights defined in (3.1), then for

any p ∈ (0, 1) the corresponding quantile estimate (2.6) converges weakly, that is

√
nhr

(
F̂−1

x,G(p)− F−1
x (p) + bn(x, p)

) D−→ N (0, V (x, p)) ,

with bias

bn(x, p) =
h2

rµ2(Kr)

fX(x)F ′
x(F

−1
x (p))

(
∂2

1h(x, F−1
x (p))− f ′′X(x)p

)
,(3.8)

and asymptotic variance

V (x, p) =
p(1− p)

∫
K2

r (u)du

fX(x)(F ′
x(F

−1
x (p)))2

.(3.9)

(b) If the weights in (1.3) are given by the local linear weights defined in (3.2), then for any

p ∈ (0, 1) the corresponding quantile estimate (2.6) converges weakly, that is

√
nhr

(
F̂−1

x,G(p)− F−1
x (p) + b̄n(x, p)

) D−→ N (0, V (x, p))

with bias

b̄n(x, p) =
h2

rµ2(Kr)

F ′
x(F

−1
x (p))

∂2
1F (F−1

x (p)|x)

and asymptotic variance V (x, p) defined by (3.9).
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Remark 3.2. Note that the estimate considered in the second part of Theorem 3.1 is first order

asymptotic equivalent to the local double kernel quantile estimate proposed by Yu and Jones

(1998) if the corresponding second bandwidth in this estimate is of smaller order than the first

bandwidth (see Theorem 1 in this reference). On the other hand for the local constant and local

linear quantile estimate defined by (1.1) and (1.2), it follows from the results in Yu and Jones

(1997) that the bias and variance of the local constant fit are given by

h2
rµ2(Kr)

{
−∂2

1F (F−1
x (p)|x)

F ′
x(F

−1
x (p))

+ 2
f ′X(x)(F−1

x (p))′

fX(x)

}
+ o(h2

r) ,

p(1− p)

nhr(F ′
x(F

−1
x (p))2

∫
K2

r (u)du + o

(
1

nhr

)
,

respectively. Similarly, the local linear estimate defined by (1.2) yields a bias of the form

h2
rµ2(Kr)(F

−1
x (p))′′ + o(h2

r)

and the same variance. Thus from a first order asymptotic point of view there is a difference

between the estimates proposed in this paper and the methods (1.1) and (1.2) based on a combi-

nation of the concept of check function and local smoothing. However, the important difference

for practical applications is that the new estimates keep the monotonicity with respect to the

probability p without any additional modification.

Remark 3.3. It is worthwhile to mention that the inverse of the statistic F̂−1
x,G, say

F̂x,G(y) = Ĥx(G(y))

yields a strictly increasing estimate of the conditional distribution function F (y|x), which satisfies

the constraints 0 ≤ F̂x(y) ≤ 1 (y ∈ R). In this sense the methodology can be viewed as an

alternative to the adjusted Nadaraya-Watson estimate proposed by Hall et al. (1999). Moreover,

if hd = o(hr), it follows for the estimate (1.3) with local linear weights by similar arguments as

presented in the proof of Theorem 3.2 in Dette, Neumeyer and Pilz (2006) that

√
nhr(F̂x,G(y)− F (y|x)− cn(y|x))

D−→ N (0, w(y|x))

where

cn(y|x) =
h2

rµ2(Kr)

fX(x)
∂2

1F (y|x)

and

w(y|x) =
F (y|x)(1− F (y|x))

fX(x)

∫
K2(u)du.
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This shows that the estimate F̂x,G is first order asymptotically equivalent to the adjusted Nadaraya-

Watson estimate proposed by Hall et al. (1999). It is also worthwhile to mention that in contrast

to the method suggested by these authors the estimate proposed in this paper can be easily

extended to local polynomial techniques [see Fan and Gijbels (1996) or Masry and Fan (1997)]

without loosing monotonicity and the properties of a distribution function.

Remark 3.4. It follows from the proof in the Appendix that the results of Theorem 3.1 can be

generalized in several ways, and some of these generalizations are briefly indicated in this remark.

(a) Note that a d-dimensional predictor, say x = (x1, . . . , xd) does not change the principal

result. For example, if the local linear weights together with the corresponding product

kernel K(u1, ..., ud) =
∏d

j=1 Kr(uj) are used in the estimate of the conditional distribution

function in the first step, the resulting estimate F̂x,G is sill asymptotically normal with bias

b̄n(x, p) =
h2

rµ2(Kr)

F ′
x(F

−1
x (p))

d∑
j=1

∂2
j F (F−1

x (p)|x)

(here the ∂2
j denotes the second derivative of F (y|x) with respect to xj) and variance

V (x, p) =
p(1− p)

∫
K2(u)du

fX(x)nhd
r(F

′
x(F

−1
x (p)))2

.

(b) Results for dependent data can be obtained in a similar way. For example, if {(Xi, Yi)} is

an absolute regular process with coefficients

β(i) = sup
i≥1

E
{

sup
A∈Fi

1

P (A|F i
1)− P (A)

}

satisfying
∑

i≥1 i2β(i) < ∞, then the assertions of Theorem 3.1 are still valid [here F i
j denote

the sigma field generated by {(Xj, Yj), . . . , (Xi, Yi)}].

Remark 3.5. As indicated in the introduction the procedure proposed in Section 2 is applicable

to any nonparametric estimate of the conditional distribution function and similar results as

presented in Theorem 3.1 can be obtained provided that there exists a limit theorem for the

nonparametric initial estimate of the conditional distribution function, where the bias and variance

in Theorem 3.1 have to be modified appropriately. In fact one can (under some very technical

assumptions) show that the weak convergence of

an(F̂x(F
−1
x (p))− F (F−1

x (p)|x)− bn(F−1
x (p)|x))

D−→ N (0, σ2(F−1
x (p)|x))
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implies that the corresponding quantile estimator defined in Section 2, say F̂−1
x (p), converges in

law, i.e.:

an

(
F̂−1

x (p)− F−1
x (p) +

bn(F−1
x (p)|x)

F ′
x(F

−1
x (p))

)
D−→ N

(
0,

σ2(F−1
x (p)|x)

(F ′
x(F

−1
x (p)))2

)
.

An important example is the local polynomial estimator of odd degree r [see. Fan, Gijbels (1996)

for details]. If the corresponding weights are used for the estimation of the conditional distribution

function we obtain

√
nhr

(
F̂−1

x (p)− F−1
x (p) + b̃n(p|x)

) D−→ N (
0, σ̃2(p|x)

)

with asymptotic bias and variance

b̃n(p|x) = et
1S

−1cr
1

(r + 1)!

∂r
1F (F−1

x (p)|x)

F ′
x(F

−1
x (p))

hr+1,

σ̃2(p|x) = et
1S

−1S∗S−1e1
p(1− p)

fX(x)(F ′
x(F

−1
x (p)))2

,

where we use the notation

S :=

(∫
uj+lKr(u)du

)

0≤j,l≤r

, S∗ :=

(∫
uj+lK2

r (u)du

)

0≤j,l≤r

,

cr :=
(∫

ur+lKr(u)du, ...,
∫

u2r+lKr(u)du
)

and e1 = (1, 0, ..., 0) ∈ IRr+1. Thus the method pro-

posed in this paper yields non-crossing estimates of quantile curves with a higher order expansion,

similar to the usual local polynomial estimate in nonparametric regression.

4 Empirical results

In the present section we study the finite sample properties of the new estimate by means of a

simulation study. First we investigate the impact of the choice of the function G on the estimate

of the quantile estimate, secondly we compare the method proposed in this paper with some of the

currently available procedures for non-crossing quantile curves, which are most similar in spirit to

the new procedure [see Yu and Jones (1998) and Hall et al. (1999)]. Finally the properties of the

new estimate are illustrated by a data example.

4.1 Sensitivity with respect to choice of G

Recall from the asymptotic results presented in Section 3 that for the choice hd = o(hr) the

function G has no impact on the first order asymptotic properties of the new estimates for the
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quantile curves. For practical applications it is of interest to investigate in what sense these

observations can be transferred to realistic sample sizes.

Note that the function G should depend on the point x where one wants to estimate the quantile

F−1(p|x). This is intuitively clear, but it also follows from the definition (2.5) in Section 2, that

the distribution function of G should give a reasonable weight to most of the responses Y1, . . . , Yn

whose corresponding predictors are close to the point x. Thus in practice the function G should

be adapted to the point x and the data, and we propose the following method for this purpose.

In a first step we define for fixed x the set

{Yj | |Xj − x| < hd; j = 1, . . . , n}(4.1)

of all observations Yj with a corresponding predictor in the neighbourhood of x, and denote its

ordered elements by Z1, . . . , Zk. We consider a distribution from a location scale family and choose

G = Ĝx such that Ĝ−1
x (0.05) = Zb1+0.05kc and Ĝ−1

x (0.95) = Zb0.95kc. In order to study the impact

of the form of G on the resulting estimate we investigate 3 distributions, the Cauchy, double

exponential and normal distribution, where the scaling and location parameter have been adapted

to the data by the procedure described in the previous paragraph. In Figure 4.1 we show the

three estimates (obtained from the different choices for the function G) for Examples 2 and 3 in

Yu and Jones (1998), that is

model 2: Y = 2.5 + sin(2X) + 2 exp(−16X2) + 0.5Z, X ∼ N (0, 1), Z ∼ N (0, 1)

model 3: Y = 2 + 2 cos(X) + exp(−4X2) + E X ∼ N (0, 1), E ∼ Exp(1).
(4.2)

The figure shows the resulting estimates of the 10%, 50% and 90% conditional quantile curves

averaged over 100 replications. For the bandwidth hr in the estimate of the conditional distribution

function we applied the bandwidth selection rule proposed in Yu and Jones (1998)

hr = hr(p) = ĥr,opt

{
p(1− p)

ϕ(Φ−1(p))2

}1/5

,(4.3)

where ϕ and Φ denote the density and cdf of the standard normal distribution, respectively, and

we used the method of Ruppert, Sheather and Wand (1995) to obtain the preliminary estimate

ĥr,opt. All simulations were done in the statistical software R [R development core team (2006)]

and we used the Package ’Kern Smooth’ [Wand, Ripley (2005)] to compute the bandwidth. The

kernel Kr was chosen as Gauss kernel, while the Epanechnikov kernel was used for Kd. The sample

size was n = 100, we used N = 1000 points to evaluate the function Ĝ−1
x in (2.5). Note that too

large or too small values of the estimate F̂−1
x,G(p) would yield to a numerical unstable procedure
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which could destroy the basic properties of the estimate. For this reason the statistic Ĥ−1
x (p)

was truncated to lie in the interval [0.05, 0.95], more precisely, we used 0.95I{Ĥ−1
x (p) > 0.95} +

Ĥ−1
x (p)I{0.05 < Ĥ−1

x (p) < 0.95} + 0.05I{Ĥ−1
x (p) < 0.05} instead of Ĥ−1

x (p). The choice of the

bandwidth hd is less critical and we used

hd = min{p, 1− p, h1.3
r }.(4.4)

The results are displayed in Figure 4.1 and in both models we observe no visible differences between

the three estimates obtained by different choices for the function G. Further simulation results

investigating the impact of the choice of the function G are available from the second author

and demonstrate that the results presented in Figure 4.1 are representative for a large number of

situations. If the function G is adapted to the data and the point x according to the procedure

described at the beginning of this section or according to a similar method, the particular form

of the function G has no visible impact on the estimate of the quantile curve for realistic sample

sizes .

4.2 Finite sample comparison

We now compare the new estimate with the procedures proposed by Yu and Jones (1998) and

Hall et al. (1999), which are most similar in spirit to the method suggested in this paper. For the

sake of brevity we restrict ourselves to the four models considered by Yu and Jones (1998). Thus

we consider the models 2 and 3 in (4.2) and

model 1: Y = 1 + sin(3
4
X) + 0.3Z

√
sin(3

4
X) + 1 X ∼ N (0, 1

16
), Z ∼ N (0, 1)

model 4: Y = 2 + X + exp(−X)(E − log(2.6)) X ∼ U [0; 5], E ∼ Exp(1).
(4.5)

In Figure 4.2 and 4.3 we display the mean squared error of the estimates of Yu and Jones (1998)

(dotted line), Hall et al. (1999) (dashed line) and the method proposed in this paper (solid line).

All estimates require a bandwidth for the regression step, which was chosen by (4.3). The method

of Yu and Jones (1998) requires a further bandwidth, which was chosen according to formula (12)

in that paper, while the bandwidth hd in the new procedure was given by (4.4) and the function

G by the cdf of a normal distribution. We display the (pointwise) median of the mean squared

error obtained from 1000 simulation runs for the quantiles p = 10%, p = 50% and p = 90%. In

Figure 4.2 we show the results corresponding to model 1 (upper line) and model 2 (lower line).

We observe that in model 1 the estimate of Yu and Jones (1998) and the new method yield very

similar results for all three quantiles, while the estimate of Hall et al. (1999) has a larger mse,
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in particular at the boundary of the design space. In model 2 all three estimates have a similar

behaviour, where the new method yields a slightly smaller mean squared error if 10% and 90%

quantiles have to be estimated. In model 4 [see the lower panel of Figure (4.3)] the situation

is slightly different. For the estimation of the 90%-quantile curve all estimates behave similar,

while for the 50%-quantile curve the estimate of Yu and Jones (1998) and the procedure proposed

in this paper have some advantages compared to method proposed in Hall et. al. (1999). For

10%-quantile curve this method yields better results in the interior than the new procedure, but

has some problems in regions closer to the boundary. Here the estimate of Yu and Jones (1998)

has the worst performance. In model 3 the estimate of Hall et. al. (1999) yields a larger mse when

estimating the 10 % and 50% conditional quantiles while the estimate of Yu, Jones (1998) and the

new method show a very similar performance. The situation is quite different when estimating the

90% quantile curve, here estimate of Yu, Jones (1998) yields the largest mse while the estimator

of Hall et. al. (1999) has some advantage over the new method near the boundary. In the interior

part of the design region the new method yields a smaller mse. Summarizing these results (and

further simulations, which are not displayed for the sake of brevity) we note that the estimate

of Hall et al. (1999) usually yields a larger mean squared error than the estimates of Yu and

Jones (1998) and the estimates proposed in this paper. These two estimates show a very similar

behaviour with some advantages for the new method.

4.3 Data example

In this section we briefly discuss a data example, which was recently analyzed by Takeuchi et. al.

(2006) in order to demonstrate the logical problems arising in crossing estimates of quantile curves.

These authors analyzed actual measurements of the relative change in bone mineral density (BMD)

at the spine in adolescents as a function of time. The data were originally reported in Bachrach

et al. (1999) and were also analyzed in Hastie, Tibshirani, and Friedman (2001) by fitting a

smoothing spline. Because the density of the predictors in this example varies substantially, we

used a local bandwidth proposed by Fan and Gijbels (1996) for ĥr,opt in equation (4.3). To compute

the bandwidth we used the C-code provided by Fan (1995).

In contrast to the analysis performed by Takeuchi et. al. (2006) we consider male and female

persons separately [see also Figure 5.6 in Hastie et. al. (1999)]. The corresponding (non-crossing)

estimates of the quantile curves are presented in Figure 4.4 and complement the picture observed

in the cited references. The relative change in bone mineral density is larger at the beginning

of the period between 10 and 25 years and the strong increase happens even earlier for female

13



persons. The two figures also indicate a larger variability for the female children in regions, where

the relative change is rather large.

5 Appendix: proofs

For the sake of brevity we restrict ourselves to a proof of the first part of Theorem 3.1, all other

results are proved similarly and the arguments therefore omitted. Moreover, for the sake of a

simple notation we assume n = N. The proof is performed in two steps. In a first step we

establish the weak convergence

√
nhr(Ĥ

−1
x (p)−H−1

x (p) + b̃n(x, p))
D−→ N (0, Ṽ (x, p)) ,(4.1)

where

b̃n(x, p) =
h2

rµ2(Kr)

fX(x)

(
∂2

1h(x, F−1
x (p))− f ′′X(x)p

) G′(F−1
x (p))

F ′
x(F

−1
x (p))

,(4.2)

Ṽ (x, p) =
p(1− p)

∫
K2(u)du(G′(F−1

x (p)))2

fX(x)(F ′
x(F

−1
x (p)))2

,(4.3)

and we use the notation Hx = Fx ◦G−1. In a second step we apply a Taylor expansion to complete

the proof of Theorem 3.1. More precisely we obtain for the statistic

√
nhrTn =

√
nhr

(
F̂−1

x,G(p)− F−1
x (p) + bn(x, p)

)

=

√
nhr

G′(F−1
x (p))

√
nhr(Ĥ

−1
x (p)−H−1

x (p) + b̃n(x, p)) + Rn,

where the remainder term is defined by

Rn =
√

nhr

(
Ĥ−1

x (p)−H−1
x (p)

)(
(G−1)′(ξ)− (G−1)′(H−1

x (p))
)

for some ξ satisfying |ξ − H−1
x (p)| ≤ |Ĥ−1

x (p) − H−1
x (p)| P−→ 0. A standard argument and (4.1)

now show that Rn = op(1), and the assertion of the theorem follows if the first step in (4.1) can

be established.

For a proof of the weak convergence in (4.1) we introduce the decomposition

Ĥ−1
x (p)−H−1

x (p) = ∆(1)
n (p) +

1

2
∆(2)

n (p) + ∆(3)
n (p),(4.4)

where

∆(1)
n (p) = − 1

nhd

n∑
i=1

Kd

(
Fx(gi)− p

hd

) (
F̂x(gi)− Fx(gi)

)
,(4.5)
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∆(2)
n (p) = − 1

nh2
d

n∑
i=1

K ′
d

(
ξi − p

hd

) (
F̂x(gi)− Fx(gi)

)2

,(4.6)

∆(3)
n (p) =

1

nhd

∫ t

−∞

n∑
i=1

Kd

(
H( i

n
)− u

hd

)
du−H−1

x (p) ,(4.7)

and we have used the notation gi := G−1(i/n) and |ξi − Fx(gi)| ≤ |Fx(gi)− F̂x(gi)| (i = 1, . . . , n)

From Lemma 2.1 in Dette, Neumeyer and Pilz (2006) it follows that

∆(3)
n (y) = µ2(Kd)h

2
d(H

−1)′′(t) + O

(
1

nhd

)
,(4.8)

and the assertion (4.1) is now a consequence of Slutzky’s Lemma if we establish

√
nhr

(
∆(1)

n (p) + b̃n(x, p)
) D−→ N

(
0, Ṽ (x, p)

)
,(4.9)

√
nhr∆

(2)
n (p) = op(1).(4.10)

For this purpose we recall the definition of the estimate (1.3) for the Nadaraya Watson weights

(3.1) and obtain

∆(1)
n (p) = − 1

nhd

n∑
i=1

Kd

(
Fx(gi)− p

hd

)
Dn(p, gi)(1 + op(1)) ,(4.11)

∆(2)
n (p) = − 1

nh2
d

n∑
i=1

K
′
d

(
ξi − p

hd

)
D2

n(x, gi)(1 + op(1)) ,(4.12)

where the quantity Dn(x, y) is a sum of independent identically distributed random variables, i.e.

Dn(x, y) =
n∑

i=1

Zn,i(y)

with Zn,i(y) = 1
nhr

1
fX(x)

Kr

(
Xi−x

hr

) (
I{Yi≤y} − Fx(y)

)
. Consequently, the leading term in (4.11) can

be written as H lin
x (p) =

∑n
k=1 Yn,k(p), where the independent, identically distribiuted random

variables Yn,k(p) are given by

Yn,k(p) =
1

nhd

n∑
i=1

Kd

(
Fx(gi)− p

hd

)
Zn,k(gi).(4.13)

A straightforward but tedious calculation shows that

E[Zn,1(p)] =
1

n
h2

rµ2(Kr)
1

fX(x)
(∂2

1h(x, p)− f ′′X(x)Fx(p)) + o

(
h2

r

n

)
,

E[Zn,1(p1)Zn,1(p2)] =
1

n2hr

∫
K2

r (u)du
Fx(p1 ∧ p2)− Fx(p1)Fx(p2)

f 2
X(x)

+ o

(
1

n2hr

)
,
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and it follows that

E
[
H lin

x (p)
]

= b̃n(x, p) + o(h2
r) + O

(
1

nhd

)

Var(H lin
x (p)) =

1

nhr

Ṽ (x, p) + o

(
1

nhr

)
.

The Lindeberg condition for Yn,1(p), ..., Yn,n(p) can easily be checked and the weak convergence in

(4.9) follows.

For a proof of the estimate (4.10) we use Cauchy’s inequality which yields

|∆(2)
n (p)| ≤ 1

nh2
d

n∑
i=1

∣∣∣∣K ′
d

(
ξi − p

hd

)∣∣∣∣ Dn(gi)
2(1 + op(1)) ≤ AnBn(1 + op(1)),

where the quantities An and Bn are defined by

An =
( 1

nhd

n∑
i=1

∣∣∣∣K ′
d

(
ξi − p

hd

)∣∣∣∣
2)1/2

Bn =
( 1

nh3
d

n∑
i=1

D4
n(gi)

)1/2

and Dn(gi) = F̂x(gi)−Fx(gi). From Lebesgue’s Theorem and the Lipschitz continuity of the kernel

Kd we have for some constant L

A2
n ≤ 2

nhd

n∑
i=1

∣∣∣∣K ′
d

(
Fx(gi)− p

hd

)∣∣∣∣
2

+
2

nhd

n∑
i=1

∣∣∣∣K ′
d

(
ξi − p

hd

)
−K ′

d

(
Fx(gi)− p

hd

)∣∣∣∣
2

≤ 2

hd

∫ 1

0

∣∣∣∣K ′
d

(
Fx(G

−1(u))− p

hd

)∣∣∣∣
2

du + O

(
1

nh2
d

)
+

2

nhd

n∑
i=1

L

∣∣∣∣
(

ξi − p

hd

− Fx(gi)− p

hd

)∣∣∣∣
2

= 2

∫
|K ′

d(u)|2du
G′(F−1

x (p))

F ′
x(F

−1
x (p))

+
1

h2
d

Op

(
1

nhr

)
+ o(1) = Op(1) .

A direct calculation yields supy E[D4
n(x, y)] = O(h8

r) and from Markov’s inequality we obtain

√
nhr∆

2
n(p) = Op

(
nh9

r

h3
d

)1/2

(1 + op(1)),

which proves the remaining statement (4.10) and completes the proof of the first part of Theorem

3.1.
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Figure 4.1: Nonparametric estimates of the quantile curves for various functions G and various

quantiles for models 2 (upper panel) and 3 (lower panel). The estimates result from the use of the

normal (solid line), double exponential (dashed line), and Cauchy distribution (dotted line).
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Figure 4.2: Mean squared error of nonparametric estimates in model 1 (upper panel) and model 2

(lower panel) for different quantile estimates. Dashed line: estimate of Hall et al. (1999); dotted

line: estimate of Yu and Jones (1998); solid line: the estimate F̂x,G proposed in this paper.
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Figure 4.3: Mean squared error of nonparametric estimates in model 3 (upper panel) and model 4

(lower panel) for different quantile estimates. Dashed line: estimate of Hall et al. (1999); dotted

line: estimate of Yu and Jones (1998); solid line: the estimate F̂x,G proposed in this paper.
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Figure 4.4: Non-crossing estimates of quantile curves for the BMD data. Left panel: male persons,

right panel: female persons.
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